Measuring neutrino interactions with solar (and atmospheric) neutrinos

Alexander Friedland

Los Alamos National Lab

With C. Lunardini (IAS & INT, Seattle),
M. Maltoni (SUNY, Stony Brook),
C. Peña-Garay (IAS)

Motivation: WHAT?

- At the moment, neutrino physics is in a truly unique position:
 - · Lots of new, high quality data
 - > Solid evidence for physics beyond the minimal SM
 - > all implications are yet to be understood
- On the other hand, neutrino properties remain one of the least tested aspects of the SM
 - In particular, little is known about the interactions of the tau neutrino

Quantifying neutrino interactions

 Parameterize additional contributions due to heavy scalar/vector exchange as

$$L^{NSI} = -2\sqrt{2}G_F(\bar{\nu}_{\alpha}\gamma_{\rho}\nu_{\beta})(\epsilon_{\alpha\beta}^{f\tilde{f}L}\bar{f}_L\gamma^{\rho}\tilde{f}_L + \epsilon_{\alpha\beta}^{f\tilde{f}R}\bar{f}_R\gamma^{\rho}\tilde{f}_R) + h.c.$$

Well established only for the μ-neutrino

$$\epsilon_{e\mu} \lesssim 10^{-3}, \; \epsilon_{\mu\mu} \lesssim 10^{-3} - 10^{-2}$$

• poorly known for the e-neutrino and especially the τ -neutrino (not using SU(2))

$$-0.4 < \epsilon_{ee}^{uuR} < 0.7, \ |\epsilon_{\tau e}^{uu}| < 0.5, \ |\epsilon_{\tau e}^{dd}| < 0.5, \ |\epsilon_{\tau e}^{dd}| < 0.5, \ |\epsilon_{\tau e}^{uuR}| < 3$$
 S. Davidson et al, JHEP 0303, 011 (2003)

WHY solar and atm. neutrinos?

- Need a " v_{τ} beam"!
 - Oscillations (both in solar and atmospheric neutrinos), make v_{τ} 's, according to the standard combined analysis
 - In the standard case, the oscillation parameters are quite well known by now
- Can we use these data to constrain neutrino interactions?
- Are oscillations robust? Do non-standard interactions (NSI) spoil this picture?

Oscillations: standard analysis

Robust? Can constrain NSI?

NSI and solar neutrinos: summary

• Solar neutrinos:

- Constrain the NSI parameter space, beyond what is possible with accelerators
- In the remaining part of the parameter space, the NSI effects can be completely non-trivial! Can give a new solution, LMA-0, \rightarrow uncertainty in the determination of the osc. parameters.

Standard LMA solution: physics

- \bullet 8B survival probability \sim 30%, flat (SNO, Super-K)
- GALLIUM experiments (SAGE, GALLEX + GNO)
 see about 54% of the SSM prediction
- Δ m² is chosen to match the density in the solar core, such that the high-E v's undergo adiabatic conversion (P_{ee} =sin2 θ), while the low-E ones don't (P_{ee} =1-sin²2 θ /2)

Standard LMA solution: physics

- For smaller $\Delta m^2/E$, will hit the resonance condition in the Earth
- -> need to worry about the Earth regeneration effect
 - Put SNO and SK energies in the narrow "flat" window between the Earth and the solar resonances

Solar analysis: setup

 Take the matter term in the osc. Hamiltonian to have the form

$$H_{\text{mat}} = \sqrt{2}G_F n_e \begin{pmatrix} 1 + \epsilon_{ee} & 0 & \epsilon_{e\tau}^* \\ 0 & 0 & 0 \\ \epsilon_{e\tau} & 0 & \epsilon_{\tau\tau} \end{pmatrix} \cdot \begin{array}{l} \epsilon_{\alpha\beta} \equiv \sum_{f=u,d,e} \epsilon_{\alpha\beta}^f n_f/n_e \\ \epsilon_{\alpha\beta} \equiv \epsilon_{\alpha\beta}^{fL} + \epsilon_{\alpha\beta}^{fR} \end{array}$$

• The solar problem reduces to a 2x2 ν_e - ν_μ system

$$H_{\text{mat}}^{2\times2} = \sqrt{2}G_F n_e \begin{pmatrix} 1 + \epsilon_{ee} & -\epsilon_{e\tau}^* \sin\theta_{23} \\ -\epsilon_{e\tau} \sin\theta_{23} & \epsilon_{\tau\tau} \sin^2\theta_{23} \end{pmatrix}.$$

$$H_{\text{vac}} = \frac{\Delta m_{\odot}^2}{4E_{\nu}} \begin{pmatrix} -\cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix}$$

Effect of the NSI on the solar survival probability and day/night asymmetry

• Effect depends on the sign of $\varepsilon_{er}!$

1.
$$\varepsilon_{11}^{u} = \varepsilon_{11}^{d} = \varepsilon_{12}^{u} = \varepsilon_{12}^{d} = 0$$

2.
$$\varepsilon_{11}^{u} = \varepsilon_{11}^{d} = -0.008$$
, $\varepsilon_{12}^{u} = \varepsilon_{12}^{d} = -0.06$;

3.
$$\varepsilon_{11}^{u} = \varepsilon_{11}^{d} = -0.044$$
, $\varepsilon_{12}^{u} = \varepsilon_{12}^{d} = 0.14$;

4.
$$\varepsilon_{11}^{u} = \varepsilon_{11}^{d} = -0.044$$
, $\varepsilon_{12}^{u} = \varepsilon_{12}^{d} = -0.14$.

LMA=0: physics

- The d/n effect is proportional to $sin(2\theta-2\alpha)$, where θ is the vacuum angle and α is the mixing in H_{mat} .
- When the d/n
 effect is
 suppressed, the
 allowed solar region
 extends to low △m²

LMA-0: fit

 Choose a point that cancels the d/n effect:

$$\varepsilon_{ee}^{d} = \varepsilon_{ee}^{u} = -0.025,$$

$$\varepsilon_{e\tau}^{d} = \varepsilon_{e\tau}^{u} = 0.11,$$

$$\varepsilon_{\tau\tau}^{d} = \varepsilon_{\tau\tau}^{u} = 0.08.$$

Testing LMA-0

KamLAND

16 14 12 10 8 6 4 2 0 1 2 3 4 5 6 7 8 Evis/MeV

Solar neutrino experiments

Atmospheric neutrinos and NSI: background

- Earlier 2-family $v_{\mu} \leftrightarrow v_{\tau}$ analysis
 - > very tight constraints on $\epsilon_{\mu\tau}$, $\epsilon_{\tau\tau}$
 - Do they extend to $\varepsilon_{e\tau}$? Rule out solar LMA-0?
- However, the atmospheric analysis DOES NOT reduce to a 2x2 ν_{μ} - ν_{τ} system!
 - Our 3-family analysis gives qualitatively new effects:
 - find bounds on NSI, but large NSI ($\epsilon_{e\tau} \sim \epsilon_{\tau\tau} \sim 1$) can be consistent with the data
 - The large NSI change the osc. fit: $\theta < \pi/4$, $\Delta m^2 \uparrow$

Allowed NSI range: fit and predictions

Scanned 4-D space $(\epsilon_{e\tau}, \, \epsilon_{\tau\tau}, \, \Delta m^2, \, \theta);$ marginalized over $\Delta m^2, \, \theta$

$$\epsilon_{\tau\tau} = |\epsilon_{e\tau}|^2/(1+\epsilon_{ee})$$

$$|1+\epsilon_{ee}+\epsilon_{\tau\tau}-\sqrt{(1+\epsilon_{ee}-\epsilon_{\tau\tau})^2+4|\epsilon_{e\tau}|^2}|\lesssim 0.4.$$

Effect of NSI on the oscillation fit

• The best-fit region shifts to smaller θ and larger Δm^2 : $\cos 2\theta \simeq s_{\beta}^2/(1+c_{\beta}^2)$; $\Delta m^2 \simeq \Delta m_m^2(1+\cos^{-2}\beta)/2$

 $\epsilon_{e\tau} = 0, \epsilon_{\tau\tau} = 0;$ $\epsilon_{e\tau} = 0.30, \epsilon_{\tau\tau} = 0.106;$ $\epsilon_{e\tau} = 0.60, \epsilon_{\tau\tau} = 0.424;$ $\epsilon_{e\tau} = 0.90, \epsilon_{\tau\tau} = 0.953.$

Testing the NSI

- SNO should lower its threshold to look for the upturn in P_{ee}
- Borexino should measure ⁷Be line, to see if the flux is lower, as predicted by LMA-0
- Pep neutrinos!
- Atmospheric mixing angle should be probed by MINOS: will test the large NSI possibility
- NO-LOSE situation: confirmation of the standard scenario would place strong bounds on the NSI. In the opposite case, new physics at the 10²-10³ GeV!